Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612894

RESUMO

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Assuntos
Aminopeptidases , Insulina , Ensaios de Triagem em Larga Escala , Insulina Regular Humana , Corantes , Ácidos Hidroxâmicos , Zinco
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473764

RESUMO

Inhibition of insulin-regulated aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign of approximately 10,000 compounds, identifying novel small-molecule-based compounds acting as inhibitors of the enzymatic activity of IRAP. Here we report on the chemical synthesis, structure-activity relationships (SAR) and initial characterization of physicochemical properties of a series of 48 imidazo [1,5-α]pyridine-based inhibitors, including delineation of their mode of action as non-competitive inhibitors with a small L-leucine-based IRAP substrate. The best compound displays an IC50 value of 1.0 µM. We elucidate the importance of two chiral sites in these molecules and find they have little impact on the compound's metabolic stability or physicochemical properties. The carbonyl group of a central urea moiety was initially believed to mimic substrate binding to a catalytically important Zn2+ ion in the active site, although the plausibility of this binding hypothesis is challenged by observation of excellent selectivity versus the closely related aminopeptidase N (APN). Taken together with the non-competitive inhibition pattern, we also consider an alternative model of allosteric binding.


Assuntos
Aminopeptidases , Insulina , Animais , Insulina Regular Humana , Antígenos CD13 , Leucil Aminopeptidase , Piridinas
3.
Horm Behav ; 161: 105501, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368844

RESUMO

Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.

4.
Eur J Med Chem ; 265: 116122, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38199164

RESUMO

Two series of N-(heteroaryl)thiophene sulfonamides, encompassing either a methylene imidazole group or a tert-butylimidazolylacetyl group in the meta position of the benzene ring, have been synthesized. An AT2R selective ligand with a Ki of 42 nM was identified in the first series and in the second series, six AT2R selective ligands with significantly improved binding affinities and Ki values of <5 nM were discovered. The binding modes to AT2R were explored by docking calculations combined with molecular dynamics simulations. Although some of the high affinity ligands exhibited fair stability in human liver microsomes, comparable to that observed with C21 undergoing clinical trials, most ligands displayed a very low metabolic stability with t½ of less than 10 min in human liver microsomes. The most promising ligand, with an AT2R Ki value of 4.9 nM and with intermediate stability in human hepatocytes (t½ = 77 min) caused a concentration-dependent vasorelaxation of pre-contracted mouse aorta.


Assuntos
Receptor Tipo 2 de Angiotensina , Sulfonamidas , Camundongos , Humanos , Animais , Receptor Tipo 2 de Angiotensina/metabolismo , Ligantes , Sulfonamidas/química , Tiofenos/química , Aorta/metabolismo , Angiotensina II/metabolismo
5.
Curr Issues Mol Biol ; 44(10): 5000-5012, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36286055

RESUMO

Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.

6.
Behav Brain Res ; 432: 113971, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35738337

RESUMO

Anabolic androgenic steroids (AAS) are frequently used to improve physical appearance and strength. AAS are known to affect muscle growth, but many AAS-users also experience psychiatric and behavioral changes after long-term use. The AAS-induced effects on the brain seem to depend on the type of steroid used, but the rationale behind the observed effect is still not clear. The present study investigated and compared the impact of nandrolone decanoate and testosterone undecanoate on body weight gain, levels of stress hormones, brain gene expression, and behavioral profiles in the male rat. The behavioral profile was determined using the multivariate concentric squared field test (MCSF-test). Blood plasma and brains were collected for further analysis using ELISA and qPCR. Nandrolone decanoate caused a reduction in body weight gain in comparison with both testosterone undecanoate and control. Rats receiving nandrolone decanoate also demonstrated decreased general activity in the MCSF. In addition, nandrolone decanoate reduced the plasma levels of ACTH in comparison with the control and increased the levels of corticosterone in comparison with testosterone undecanoate. The qPCR analysis revealed brain region-dependent changes in mRNA expression, where the hypothalamus was identified as the region most affected by the AAS. Alterations in neurotransmitter systems and stress hormones may contribute to the changes in behavior detected in the MCSF. In conclusion, both AAS affect the male rat, although, nandrolone decanoate has more pronounced impact on the physiological and the behavioral parameters measured.


Assuntos
Anabolizantes , Nandrolona , Anabolizantes/farmacologia , Animais , Peso Corporal , Masculino , Nandrolona/farmacologia , Decanoato de Nandrolona , Neurotransmissores/farmacologia , Ratos , Testosterona/análogos & derivados , Testosterona/farmacologia
7.
Bioorg Med Chem ; 65: 116790, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550979

RESUMO

The syntheses and the AT1R and AT2R binding data of a series of new small molecule ligands are reported. These ligands comprise a phenylthiazole scaffold rather than the biphenyl or phenylthiophene scaffolds found in essentially all of the previously described ligands originating from the nonselective AT1R/AT2R ligand L-162,313 and the AT2R selective agonist C21, the latter now in Phase II/III clinical trials. A phenylthiazole rather than the phenylthiophene scaffold that is present in the AT2R selective agonist C21 and in the AT2R selective antagonist C38 had a deleterious effect on the affinity to AT2R. Nevertheless, a significant improvement could be accomplished by introduction of a small bulky alkyl group in the 2-position of the imidazole ring attached through a methylene group bridge to the phenylthiazole scaffold. Hence, a combination of a 2-tert-butyl or a 2-isopropyl group and a butoxycarbonyl furnished potent AT2R selective ligands. Furthermore, a high affinity ligand derived from L-162,313 and exhibiting a > 35 fold selectivity for AT1R was identified (10). The ligand 21 with the 2-tert-butyl group and âˆ¼ 35 fold selectivity for AT2R, demonstrated high stability in human, rat and mouse liver microsomes and a very attractive profile with regard to the inhibition of common drug-metabolizing CYP enzymes. Thus, very low levels of inhibition of CYP 3A (5%), 2D6 (12%), 2C8 (26%), 2C9 (23%) and 2B6 (24%) were observed with the 2-tert-butyl derivative comprising the methoxycarbonyl sulfonamide function, levels that are significantly lower than those obtained with C21 under the same experimental conditions.


Assuntos
Receptor Tipo 2 de Angiotensina , Receptores de Angiotensina , Angiotensina II/química , Angiotensina II/farmacologia , Animais , Humanos , Imidazóis , Ligantes , Camundongos , Ratos , Receptor Tipo 2 de Angiotensina/agonistas , Sulfonamidas , Tiofenos
8.
Bioorg Med Chem ; 66: 116804, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35576659

RESUMO

Ligands comprising a benzimidazole rather than the imidazole ring that is common in AT2R ligands e.g. in the AT2R agonist C21, can provide both high affinity and receptor selectivity. In particular, compounds encompassing benzimidazoles, substituted in the 2-position with small bulky groups such as an isopropyl (Ki = 4.0 nM) or a tert-butyl (Ki = 5.3 nM) or alternatively a thiazole heterocycle (Ki = 5.1 nM) demonstrate high affinity and AT2R selectivity. An n-butyl chain, as found in the AT1R selective sartans, makes the ligand less receptor selective. The isobutyl group on the biaryl scaffold present in most AT2R selective ligands reported so far was originally derived from the nonselective potent AT1R/AT2R ligand L-162,313. Notably, in all ligands discussed herein, the isobutyl group was substituted by an n-propyl group and ligands with high affinity to AT2R were provided and in addition the majority of them demonstrate a favorable AT2R/AT1R selectivity. The introduction of fluoro atoms in various positions had no pronounced effect on the affinity data. Ligands with a thiazole or a tert-butyl group attached to the 2-position and with a terminal trifluoromethyl butoxycarbonyl sidechain exhibited a similar stability as C21 in human liver microsomes, while other ligands examined were less stable in the microsome assay.


Assuntos
Benzimidazóis , Receptor Tipo 2 de Angiotensina , Benzimidazóis/farmacologia , Humanos , Imidazóis , Ligantes , Receptor Tipo 2 de Angiotensina/agonistas , Sulfonamidas , Tiazóis , Tiofenos
9.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200173

RESUMO

Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.


Assuntos
Encéfalo/metabolismo , Encefalinas/genética , Epigênese Genética/genética , Precursores de Proteínas/genética , Transcrição Gênica/genética , Analgésicos Opioides/metabolismo , Animais , Epigenômica/métodos , Regulação da Expressão Gênica/genética , Humanos , Neuropeptídeos/genética
10.
Eur J Neurosci ; 54(4): 5560-5573, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145943

RESUMO

In spite of its apparent symmetry, the spinal cord is asymmetric in its reflexes and gene expression patterns including leftward expression bias of the opioid and glutamate genes. To examine whether this is a general phenomenon for neurotransmitter and neurohormonal genes, we here characterized expression and co-expression (transcriptionally coordinated) patterns of genes of the renin-angiotensin system (RAS) that is involved in neuroprotection and pathological neuroplasticity in the left and right lumbar spinal cord. We also tested whether the RAS expression patterns were affected by unilateral brain injury (UBI) that rewired lumbar spinal neurocircuits. The left and right halves of the lumbar spinal cord were analysed in intact rats, and rats with left- or right-sided unilateral cortical injury, and left- or right-sided sham surgery. The findings were (i) lateralized expression of the RAS genes Ace, Agtr2 and Ren with higher levels on the left side; (ii) the asymmetry in coordination of the RAS gene expression that was stronger on the right side; (iii) the decay in coordination of co-expression of the RAS and neuroplasticity-related genes induced by the right-side but not left-side sham surgery and UBI; and (iv) the UBI-induced shift to negative regulatory interactions between RAS and neuroplasticity-related genes on the contralesional spinal side. Thus, the RAS genes may be a part of lateralized gene co-expression networks and have a role in a side-specific regulation of spinal neurocircuits.


Assuntos
Lesões Encefálicas , Renina , Analgésicos Opioides , Angiotensinas , Animais , Ratos , Medula Espinal
11.
Exp Brain Res ; 239(7): 2221-2232, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34021800

RESUMO

Traumatic brain injury and stroke result in hemiplegia, hemiparesis, and asymmetry in posture. The effects are mostly contralateral; however, ipsilesional deficits may also develop. We here examined whether ablation brain injury and controlled cortical impact (CCI), a rat model of clinical focal traumatic brain injury, both centered over the left or right sensorimotor cortex, induced hindlimb postural asymmetry (HL-PA) with contralesional or ipsilesional limb flexion. The contralesional hindlimb was flexed after left or right side ablation injury. In contrast, both the left and right CCI unexpectedly produced HL-PA with flexion on left side. The flexion persisted after complete spinal cord transection suggesting that CCI triggered neuroplastic processes in lumbar neural circuits enabling asymmetric muscle contraction. Left limb flexion was exhibited under pentobarbital anesthesia. However, under ketamine anesthesia, the body of the left and right CCI rats bent laterally in the coronal plane to the ipsilesional side suggesting that the left and right injury engaged mirror-symmetrical motor pathways. Thus, the effects of the left and right CCI on HL-PA were not mirror-symmetrical in contrast to those of the ablation brain injury, and to the left and right CCI produced body bending. Ipsilateral effects of the left CCI on HL-PA may be mediated by a lateralized motor pathway that is not affected by the left ablation injury. Alternatively, the left-side-specific neurohormonal mechanism that signals from injured brain to spinal cord may be activated by both the left and right CCI but not by ablation injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Traumatismos da Medula Espinal , Animais , Lateralidade Funcional , Membro Posterior , Ratos
12.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33903183

RESUMO

Neuropeptides are implicated in control of lateralized processes in the brain. A unilateral brain injury (UBI) causes the contralesional sensorimotor deficits. To examine whether opioid neuropeptides mediate UBI induced asymmetric processes we compared effects of opioid antagonists on the contralesional and ipsilesional hindlimb responses to the left-sided and right-sided injury in rats. UBI induced hindlimb postural asymmetry (HL-PA) with the contralesional hindlimb flexion, and activated contralesional withdrawal reflex of extensor digitorum longus (EDL) evoked by electrical stimulation and recorded with EMG technique. No effects on the interossei (Int) and peroneaus longus (PL) were evident. The general opioid antagonist naloxone blocked postural effects, did not change EDL asymmetry while uncovered cryptic asymmetry in the PL and Int reflexes induced by UBI. Thus, the spinal opioid system may either mediate or counteract the injury effects. Strikingly, effects of selective opioid antagonists were the injury side-specific. The µ-antagonist ß-funaltrexamine (FNA) and κ-antagonist nor-binaltorphimine (BNI) reduced postural asymmetry after the right but not left UBI. In contrast, the δ-antagonist naltrindole (NTI) inhibited HL-PA after the left but not right-side brain injury. The opioid gene expression and opioid peptides were lateralized in the lumbar spinal cord, and coordination between expression of the opioid and neuroplasticity-related genes was impaired by UBI that together may underlie the side-specific effects of the antagonists. We suggest that mirror-symmetric neural circuits that mediate effects of left and right brain injury on the contralesional hindlimbs are differentially controlled by the lateralized opioid system.


Assuntos
Lesões Encefálicas , Neuropeptídeos , Animais , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos , Receptores Opioides mu , Medula Espinal
13.
Brain Res Bull ; 171: 126-134, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741459

RESUMO

The important role of mitochondria in maintaining normal brain cell function has been demonstrated in several neurodegenerative diseases where mitochondrial dysfunction is a prominent feature. Accumulating evidence indicates that opioids may induce neuronal cell death and inhibit neurogenesis, two factors that are dependent on normal mitochondrial function. The aim of the present study was to examine the effects of morphine, methadone, and fentanyl on MitoTracker-stained mitochondria. Cells from the neuroblastoma/glioma hybrid cell-line NG108-15 were seeded on 96-well cell culture plates and treated with MitoTracker for 30 min prior to opioid treatment. Morphine, methadone, and fentanyl were added at various concentrations and images of mitochondria were acquired every 30 min for four hours using a high-content imaging device. The parameters total mitochondrial area, mitochondrial network, as well as the number and mean area of mitochondrial objects were analyzed using automated image analysis. Methadone and fentanyl, but not morphine, decreased the mitochondrial network, the number of mitochondrial objects, and increased the mean area of mitochondrial objects. Both methadone and fentanyl altered mitochondrial morphology with no effects seen from morphine treatment. These data suggest that methadone and fentanyl impact mitochondrial morphology negatively, which may be associated with neuronal cell death.


Assuntos
Fentanila/farmacologia , Metadona/farmacologia , Mitocôndrias/efeitos dos fármacos , Morfina/farmacologia , Entorpecentes/farmacologia , Animais , Linhagem Celular Tumoral , Camundongos , Ratos , Imagem com Lapso de Tempo
14.
J Steroid Biochem Mol Biol ; 210: 105863, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33677017

RESUMO

The illicit use of anabolic androgenic steroids (AAS) among adolescents and young adults is a major concern due to the unknown and unpredictable impact of AAS on the developing brain and the consequences of this on mental health, cognitive function and behaviour. The present study aimed to investigate the effects of supra-physiological doses of four structurally different AAS (testosterone, nandrolone, stanozolol and trenbolone) on neurite development and cell viability using an in vitro model of immature primary rat cortical cell cultures. A high-throughput screening image-based approach, measuring the neurite length and number of neurons, was used for the analysis of neurite outgrowth. In addition, cell viability and expression of the Tubb3 gene (encoding the protein beta-III tubulin) were investigated. Testosterone, nandrolone, and trenbolone elicited adverse effects on neurite outgrowth as deduced from an observed reduced neurite length per neuron. Trenbolone was the only AAS that reduced the cell viability as indicated by a decreased number of neurons and declined mitochondrial function. Moreover, trenbolone downregulated the Tubb3 mRNA expression. The adverse impact on neurite development was neither inhibited nor supressed by the selective androgen receptor (AR) antagonist, flutamide, suggesting that the observed effects result from another mechanism or mechanisms of action that are operating apart from AR activation. The results demonstrate a possible AAS-induced detrimental effect on neuronal development and regenerative functions. An impact on these events, that are essential mechanisms for maintaining normal brain function, could possibly contribute to behavioural alterations seen in AAS users.


Assuntos
Anabolizantes/química , Anabolizantes/farmacologia , Córtex Cerebral/citologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/embriologia , Relação Dose-Resposta a Droga , Feminino , Nandrolona/química , Nandrolona/farmacologia , Neurônios/metabolismo , Cultura Primária de Células , Ratos Wistar , Receptores Androgênicos/metabolismo , Estanozolol/química , Estanozolol/farmacologia , Testosterona/química , Testosterona/farmacologia , Acetato de Trembolona/química , Acetato de Trembolona/farmacologia , Tubulina (Proteína)/genética
15.
Methods Mol Biol ; 2201: 109-116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975793

RESUMO

The opioid receptors have been an interesting target for the drug industry for decades. These receptors were pharmacologically characterized in the 1970s and several drugs and peptides have emerged over the years. In 2012, the crystal structures were also demonstrated, with new data on the receptor sites, and thus new possibilities will appear. The role of opioids in the brain has attracted considerable interest in several diseases, especially pain and drug dependence. The opioid receptors are G-protein-coupled receptors (GPCR ) that are Gi coupled which make them suitable for studying the receptor functionality. The [35S]GTP γS autoradiography assay is a good option that has the benefit of generating both anatomical and functional data in the area of interest. It is based on the first step of the signaling mechanism of GPCRs. When a ligand binds to the receptor GTP will replace GDP on the a-subunit of the G-protein, leading to a dissociation of the ßγ-subunit. These subunits will start a cascade of second messengers and subsequently a physiological response.


Assuntos
Autorradiografia/métodos , Guanosina 5'-O-(3-Tiotrifosfato)/química , Receptores Opioides mu/metabolismo , Analgésicos Opioides/metabolismo , Animais , Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Receptores Opioides/metabolismo , Transdução de Sinais , Radioisótopos de Enxofre/química , Radioisótopos de Enxofre/metabolismo
16.
Methods Mol Biol ; 2201: 171-180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975798

RESUMO

Although the number of studies that have examined the impact of opioids on cell viability is very limited, it has clearly shown that opioids commonly used in the clinic can both decrease neurogenesis and induce cell death. These negative effects induced by opioids are worrying and there is a need for further in-depth investigations addressing the impact of opioids on cell function and cell viability. A useful in vitro approach for studying the effects of opioids on cellular function and viability is using primary cortical cell cultures obtained from embryonic day 17 (E17) rat embryos. These cell cultures contain both neurons and glial cells that provide a more physiologically relevant culture condition when compared to the use of various commercially available cell lines. The primary cortical cells can be cultivated in 96-well plates, treated with various concentrations of opioids, and cell viability functions such as mitochondrial function and membrane integrity can easily be assessed using specific colorimetric assays.


Assuntos
Analgésicos Opioides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cultura Primária de Células/métodos , Analgésicos Opioides/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas/metabolismo , Córtex Cerebral/citologia , Embrião de Mamíferos/metabolismo , Mitocôndrias/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Ratos
17.
Bioorg Med Chem ; 29: 115859, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309749

RESUMO

A series of meta-substituted acetophenone derivatives, encompassing N-(alkyloxycarbonyl)thiophene sulfonamide fragments have been synthesized. Several selective AT2 receptor ligands were identified, among those a tert-butylimidazole derivative (20) with a Ki of 9.3 nM, that demonstrates a high stability in human liver microsomes (t½ = 62 min) and in human hepatocytes (t½ = 194 min). This methyloxycarbonylthiophene sulfonamide is a 20-fold more potent binder to the AT2 receptor and is considerably more stable in human liver microsomes, than a previously reported and broadly studied structurally related AT2R prototype antagonist 3 (C38). Ligand 20 acts as an AT2R agonist and caused an AT2R mediated concentration-dependent vasorelaxation of pre-contracted mouse aorta. Furthermore, in contrast to imidazole derivative C38, the tert-butylimidazole derivative 20 is a poor inhibitor of CYP3A4, CYP2D6 and CYP2C9. It is demonstrated herein that smaller alkyloxycarbonyl groups make the ligands in this series of AT2R selective compounds less prone to degradation and that a high AT2 receptor affinity can be retained after truncation of the alkyloxycarbonyl group. Binding modes of the most potent AT2R ligands were explored by docking calculations combined with molecular dynamics simulations.


Assuntos
Receptor Tipo 2 de Angiotensina/agonistas , Medula Espinal/efeitos dos fármacos , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hepatócitos/química , Hepatócitos/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Medula Espinal/patologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Tiofenos/síntese química , Tiofenos/química
18.
Eur J Pharmacol ; 892: 173820, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33345847

RESUMO

Of painful conditions, somatic pain of acute nociceptive origin can be effectively managed clinically, while neuropathic pain of chronic neuropathy origin is difficult to control. For molecules involved in pain sensation, substance P (SP) is algesic, exacerbating painful sensation, while its amino-terminal fragment, heptapeptide SP(1-7), confers biological activities different from its full-length parent neuropeptide precursor. We previously demonstrated SP(1-7) interaction with pain processing to alleviate chronic pain. Here we evaluated SP(1-7) and its C-terminal amidated analogue SP(1-7)amide, together with SP and opioid agonist DAMGO. We tested mouse behaviors of both acute somatic pain in tail-flick latency assay, and neuropathic pain in sciatic nerve injury model of chronic constriction injury (CCI). DAMGO produced dose-dependent analgesia for somatic pain as expected, so did both SP(1-7) and its analogue SP(1-7)amide, while SP yielded the opposite effect of algesia, in a phenomenon we termed 'contrintus', meaning 'opposite from within' to denote that two peptides of the same origin (SP and its metabolic fragment SP(1-7)) produced opposite effects. In CCI model, DAMGO showed a general reduction in allodynia sensitivity for both nerve-injured and normal paws, without selective effect for neuropathic pain, consistent with clinical observation that opioids are less effective for chronic neuropathic pain. On the other hand, both SP(1-7) and SP(1-7)amide displayed dose-dependent anti-allodynia effect that is selective for neuropathic pain. These findings suggest that SP(1-7) and its analogue may be useful for developing pharmaceuticals to treat neuropathic pain.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Dor Crônica/tratamento farmacológico , Neuralgia/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Substância P/farmacologia , Analgésicos Opioides/farmacologia , Animais , Dor Crônica/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Masculino , Camundongos Endogâmicos ICR , Neuralgia/fisiopatologia , Receptores Opioides mu/agonistas
19.
Brain Commun ; 2(2): fcaa208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364602

RESUMO

Unilateral traumatic brain injury and stroke result in asymmetric postural and motor deficits including contralateral hemiplegia and hemiparesis. In animals, a localized unilateral brain injury recapitulates the human upper motor neuron syndrome in the formation of hindlimb postural asymmetry with contralesional limb flexion and the asymmetry of hindlimb nociceptive withdrawal reflexes. The current view is that these effects are developed due to aberrant activity of motor pathways that descend from the brain into the spinal cord. These pathways and their target spinal circuits may be regulated by local neurohormonal systems that may also mediate effects of brain injury. Here, we evaluate if a unilateral traumatic brain injury induces hindlimb postural asymmetry, a model of postural deficits, and if this asymmetry is spinally encoded and mediated by the endogenous opioid system in rats. A unilateral right-sided controlled cortical impact, a model of clinical focal traumatic brain injury was centred over the sensorimotor cortex and was observed to induce hindlimb postural asymmetry with contralateral limb flexion. The asymmetry persisted after complete spinal cord transection, implicating local neurocircuitry in the development of the deficits. Administration of the general opioid antagonist naloxone and µ-antagonist ß-funaltrexamine blocked the formation of postural asymmetry. Surprisingly, κ-antagonists nor-binaltorphimine and LY2444296 did not affect the asymmetry magnitude but reversed the flexion side; instead of contralesional (left) hindlimb flexion the ipsilesional (right) limb was flexed. The postural effects of the right-side cortical injury were mimicked in animals with intact brain via intrathecal administration of the opioid κ-agonist (2)-(trans)-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidiny)-cyclohexyl]benzeneacetamide that induced hindlimb postural asymmetry with left limb flexion. The δ-antagonist naltrindole produced no effect on the contralesional (left) flexion but inhibited the formation of the ipsilesional (right) limb flexion in brain-injured rats that were treated with κ-antagonist. The effects of the antagonists were evident before and after spinal cord transection. We concluded that the focal traumatic brain injury-induced postural asymmetry was encoded at the spinal level, and was blocked or its side was reversed by administration of opioid antagonists. The findings suggest that the balance in activity of the mirror symmetric spinal neural circuits regulating contraction of the left and right hindlimb muscles is controlled by different subtypes of opioid receptors; and that this equilibrium is impaired after unilateral brain trauma through side-specific opioid mechanism.

20.
Front Pharmacol ; 11: 590855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178027

RESUMO

It was reported three decades ago that intracerebroventricular injection of angiotensin IV (Ang IV, Val-Tyr-Ile-His-Pro-Phe) improved memory and learning in the rat. There are several explanations for these positive effects of the hexapeptide and related analogues on cognition available in the literature. In 2001, it was proposed that the insulin-regulated aminopeptidase (IRAP) is a main target for Ang IV and that Ang IV serves as an inhibitor of the enzyme. The focus of this review is the efforts to stepwise transform the hexapeptide into more drug-like Ang IV peptidemimetics serving as IRAP inhibitors. Moreover, the discovery of IRAP inhibitors by virtual and substance library screening and direct design applying knowledge of the structure of IRAP and of related enzymes is briefly presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...